Everyday Mathematics

Intervention Activities

Pre- and Post-Assessment

Use the following Grade 4 Mathematics pre-/post-assessment pages to plan instruction and monitor progress.
DIRECTIONS FOR ADMINISTERING AND SCORING ASSESSMENTS

This assessment can be administered as a Pre-Assessment for planning instruction and then again as a Post-Assessment at year’s end to monitor progress. The assessment can be administered to children individually or in a group. Detailed guidelines for administering and scoring the Pre-/Post-Assessment are presented below.

GUIDELINES FOR USING THE PRE-ASSESSMENT

This Pre-/Post-Assessment is 26 pages long. Each page targets a specific Mathematics concept or skill. Plan for about 40 minutes to administer the Pre-Assessment, but allow more time if needed. Children should be allowed to finish answering every item. Depending on the children and your situation, you may want to administer the Pre-Assessment in two parts in different sittings.

Read directions aloud to the student(s). Note where students succeed and where they struggle on the Individual Pre-/Post-Assessment Scoring Chart. Then use Everyday Mathematics Intervention Activity units to support these areas.

To Administer the Pre-Assessment:
1. Make a copy of the assessment for each child.
2. Have children write their names at the top of each assessment page.
3. Read the directions on each page and make sure children know what to do.
4. Have children complete each item with their best answer.
5. When children have finished, collect the assessments.

To Score the Pre-Assessment:
1. Make a copy of the Individual Pre-/Post-Assessment Scoring Chart (found on page 30 of this PDF) for each student.
2. Mark each question correct or incorrect on the assessment page using the Answer Key (found at the end of this PDF).
3. To find the total assessment score, count the number of items answered correctly.
4. Then write the number count in the Pre-Assessment column.
5. Add the total to assess overall performance, and use the correlating unit in the EIA Mathematics book to target skills that look like they require more support.
Using the Results:

1. Use the results of the Pre-Assessment to determine each student’s current level of proficiency in the strategies and concepts being assessed.

2. As explained, the items in the Pre-Assessment measure strategies in particular skills. A student’s score on a particular cluster can pinpoint specific instructional needs. A student who answers fewer than 50% of items in each cluster correctly may need focused instructional attention on those particular strategies.

3. Plotting scores on the Individual Pre-Assessment/Post-Assessment Scoring Charts provides a handy reference for monitoring students’ growth and development. Such information can be used to identify the skills and strategies to be reinforced for a whole group, small group, or individual.

4. Store the Pre-Assessment/Post-Assessment Scoring Charts in an appropriate location for referral during the school year, and for end-of-year comparison of the Pre-Assessment and Post-Assessment scores.

GUIDELINES FOR USING THE POST-ASSESSMENT

The Post-Assessment is identical to the Pre-Assessment and should be administered and scored in the same way. Thus, the item numbers on the Individual Pre-/Post-Assessment Scoring Chart are the same for both assessments.

Use the results of the Post-Assessment to determine each student’s current level of proficiency in the strategies being assessed. Compare the students’ scores on the Pre-Assessment and Post-Assessment—and on each strategy cluster within the assessments—to evaluate the student’s progress since the beginning of the year.

<table>
<thead>
<tr>
<th>Grade 4 Mathematics Pre-/Post-Assessment</th>
<th>Recommended Everyday Mathematics Intervention Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations and Algebraic Thinking</td>
<td>Units 1–4</td>
</tr>
<tr>
<td>Number and Operations in Base Ten</td>
<td>Units 5–12</td>
</tr>
<tr>
<td>Number and Operations — Fractions</td>
<td>Units 13-19</td>
</tr>
<tr>
<td>Measurement and Data</td>
<td>Units 20–22</td>
</tr>
<tr>
<td>Geometry</td>
<td>Units 23–26</td>
</tr>
</tbody>
</table>
Write an equation for each problem. Then solve the problem.

1. Some number is 4 times as much as 7.

\[n = \underline{\hspace{2cm}} \times \underline{\hspace{2cm}} \]

2. The balloon man has 6 groups of balloons.
 He has 3 balloons in each group.
 How many balloons does he have in all?

3. There are 4 times as many cats as dogs.
 There are 12 dogs.
 How many cats are there?

4. Elana used 36 counters. She put 9 counters in each row.
 How many rows did she make?

\[\underline{\hspace{2cm}} \]

\[\underline{\hspace{2cm}} \]
Write an equation for each problem. Then solve the problem.

1. A librarian bought 26 new books. He unpacked 11 books. The rest of the new books are divided equally among 3 cartons. How many new books (n) are in each carton?

\[
\frac{26 - 11}{3} = \text{________}
\]

There are ______ new books in each carton.

2. Tara has 7 coins. Brian has 3 times as many coins as Tara. Brian gets some more coins. Now Brian has 24 coins. How many more coins did Jon get?

\[
7 \times \text{________} + \text{________} = \text{________}
\]

Jon got ______ more coins.

3. Mrs. Lupo baked 18 oat muffins and 14 blueberry muffins. She brought half of the muffins to school. How many muffins did Mrs. Carson bring to school?

\[
\frac{18 + 14}{2}
\]

Mrs. Lupo brought ______ muffins to school.
List the factors for each number. Show your work.

1. 11
 The factors of 11 are ________________________________.

2. 36
 The factors of 36 are ________________________________.

List the first 8 multiples for each number. Write two common multiples.

3. Multiples of 4: ________________________________
 Multiples of 6: ________________________________
 Two common multiples of 4 and 6: ______ and ______

4. Multiples of 6: ________________________________
 Multiples of 8: ________________________________
 Two common multiples of 6 and 8: ______ and ______
Extend each pattern. Then write a rule.

1. Generate Patterns

 rule: ______________________

2. 28, 21, 14, ______, ______

 rule: ______________________

3. Use the rule to make a pattern.

Input	Output
 7 | 35
 6 | 30
 5 | 25
 4

 rule: ______________________

4. Use the rule to make a pattern.

 rule: Add 6.
Write each number in expanded form.

1

<table>
<thead>
<tr>
<th>hundred thousands</th>
<th>ten thousands</th>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>8, 7 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

_______ + _______ + _______ + _______

2

<table>
<thead>
<tr>
<th>hundred thousands</th>
<th>ten thousands</th>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 0 1, 0 5 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compare. Use >, <, or =.

3

4,649 □ 4,724

4

81,099 □ 80,976
Solve each problem. Show your work.

1. 1,115 + 834

<table>
<thead>
<tr>
<th></th>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>+</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

2. 359 + 652

359
+ 652

3. 6,408 + 5,098

6,408
+ 5,098

4. 30,050 + 45,265

30,050
+ 45,265

5. 30,477 + 5,882 = n

n = ________________
Pre-/Post-Assessment • Subtract Multi-Digit Numbers

Solve each problem. Show your work.

1. 1,225 - 834

<table>
<thead>
<tr>
<th></th>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>-</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

2. 652 - 349

652
- 349

3. 6,408 - 5,098

6,408
- 5,098

4. 20,075 - 15,260

20,075
- 15,260

5. 8,475 - 872 = n

n = __________________________
Use a multiplication property to complete each problem.

1. $3 \times 6 = 6 \times \underline{}$

2. $3 \times 16 = 3 \times (\underline{} + \underline{})$

 $3 \times 16 = (3 \times \underline{}) + (3 \times \underline{})$

 $3 \times 16 = \underline{} + \underline{}$

 $3 \times 16 = \underline{}$

3. $426 \times 1 = \underline{}$

4. $(5 \times 0) \times 11 = \underline{} \times \underline{}$

 $5 \times 0 \times 11 = \underline{}$

5. $4 \times 13 = \underline{}$
Solve each problem. Show your work.

1. \[4 \times 14 \]
 \[\underline{14} \]
 \[\times 4 \]

2. \[3 \times 235 \]
 \[\underline{235} \]
 \[\times 3 \]

3. \[6 \times 79 \]
 \[\underline{79} \]
 \[\times 6 \]

4. A toy store manager orders 247 toy trains. She orders 4 times more toy cars. How many toy cars did she order?

 \[\underline{\text{toy cars}} \]
Solve each problem. Show your work.

1. 20×49

 \[
 \begin{array}{c}
 49 \\
 \times 20 \\
 \end{array}
 \]

2. 12×34

 \[
 \begin{array}{c}
 34 \\
 \times 12 \\
 \end{array}
 \]

3. 35×76

 \[
 \begin{array}{c}
 76 \\
 \times 35 \\
 \end{array}
 \]

4. Each shelf in the children’s library holds 25 books. There are 42 full shelves of children’s books.

 How many children’s books does the library have?

 _________ books
Solve each problem. Show your work.

1. \[\frac{57}{3} \]
 \[3 \overline{\sqrt{57}} \]

2. \[\frac{72}{4} \]
 \[4 \overline{\sqrt{72}} \]

3. \[\frac{87}{5} \]
 \[5 \overline{\sqrt{87}} \]

4. Ben has 74 trading cards. He puts 6 cards into each package. How many full packages of cards can he make?
 _________ packages
Solve each problem. Show your work.

1 $36 \div 9 = \underline{\hspace{2cm}}$

 $360 \div 9 = \underline{\hspace{2cm}}$

 $3,600 \div 9 = \underline{\hspace{2cm}}$

2 $621 \div 3 \quad 3 \overline{621}$

3 $248 \div 6 = \underline{\hspace{2cm}} \quad 6 \overline{248}$

4 Lena has 371 beads. She uses 9 beads for each bracelet. How many bracelets can she make?

 _________ bracelets
Find equivalent fractions. Use the pictures to help.

1. \(\frac{1}{2} = \frac{8}{8}\)

2. \(\frac{1}{5} = \frac{10}{10}\)

3. \(\frac{3}{6} = \frac{8}{8}\)

4. \(\frac{3}{4} = \frac{3}{4} \times \frac{8}{8}\)
Compare fractions. Use symbols >, <, or =.

1

\[
\frac{1}{5} \quad \text{○} \quad \frac{1}{2}
\]

2

\[
\frac{1}{2} \quad \frac{6}{8} \quad \frac{2}{8} \quad \frac{5}{8}
\]

\[
\quad \quad < \quad \quad < \quad \quad < \quad \quad <
\]

3

\[
\frac{3}{5} \quad \text{○} \quad \frac{6}{10}
\]

4

\[
\frac{2}{4} \quad \frac{2}{8} \quad \frac{4}{10}
\]

\[
\quad \quad < \quad \quad < \quad \quad <
\]
Solve each problem. Show your work.

1. \(\frac{2}{10} + \frac{5}{10} = \) __ __ __

2. \(\frac{2}{5} + \frac{4}{5} = \) ___ or ___

3. \(\frac{7}{8} - \frac{2}{8} = \) __ __ __

4. A hiking trail is \(\frac{9}{10} \) mile long. Meg hiked \(\frac{4}{10} \) mile on the trail. How much of the trail is left to hike?

__________ mile
Solve each problem. Show your work.

1. \[2\frac{3}{6} + \frac{2}{6} = \quad 2\frac{3}{6} + \frac{2}{6}\]

2. \[2\frac{2}{3} - \frac{3}{3} = \quad 2\frac{2}{3} - \frac{3}{3}\]

3. \[1\frac{4}{5} + 1\frac{1}{5} = \quad 1\frac{4}{5} + 1\frac{1}{5}\]

4. \[3\frac{2}{4} - 2\frac{3}{4} = \quad 3\frac{2}{4} - 2\frac{3}{4}\]
Solve each problem. Show your work.

1. \(8 \times \frac{1}{3} = \)
 \[
 \frac{\square}{3} = __\]

2. \(\frac{1}{6} \times 6 = \)
 \[
 \frac{\square}{6} = __\]

3. \(3 \times \frac{5}{8} = \)
 \[
 \frac{\square}{8} = __\]

4. Gabe buys 16 muffins at the bake sale. Three-fourths of the muffins are cranberry. How many cranberry muffins did he buy?

 ________ cranberry muffins
Complete each problem.

1. fraction:
 decimal:
 word name:

2. fraction:
 decimal:
 word name:

3. \[
\frac{\square}{10} = \frac{\square}{100}
\]

 \[0.\square = 0.\square\]

4. \[\square + \square = \square\]
Compare. Use >, <, or =.

1. 0.9 __ 0.6

2. 0.4 __ 0.30

3. 0.43 __ 0.48

4. 0.6 __ 0.06
Solve each problem. Show your work.

1. 5 meters = _______ centimeters

 _______ x _______ = _______

2. 6 kilograms = _______ grams

 _______ x _______ = _______

3. 8 liters = _______ milliliters

4. It is a 5-kilometer hike from the road to the cabin. How many meters away is the cabin from the road?

 _______ meters
Solve each problem. Show your work.

1. 9 yards = ________ feet

 ________ x _________ = ________

2. 5 pounds = ________ ounces

 ________ x _________ = ________

3. 7 gallons = ________ quarts

 ________ x _________ = ________

4. Tara needs 4 1/2 feet of ribbon to wrap a present. How many inches of ribbon does she need?

 _________ inches
Solve each problem. Show your work.

1. \[P = 2 \times (l + w) \]
 \[P = 2 \times (11 + 8) \]
 \[P = 38 \text{ cm} \]
 The perimeter is 38 centimeters.

2. \[A = l \times w \]
 \[A = 11 \times 8 \]
 \[A = 88 \text{ ft}^2 \]
 The area is 88 square feet.

3. The perimeter is ____________.
 The area is ____________.

4. Kaya’s calculator is 14 centimeters long and 8 centimeters wide.
 What is the perimeter of her calculator?
 What is the area?
 The perimeter is ____________.
 The area is ____________.
Use a straight edge. Draw each figure and label it.

1. line AB

2. angle FGH

3. line segment XY

Use the drawing to name each figure. Use symbols for angles and lines.

4. parallel lines

 _______ is parallel to _______.

5. perpendicular lines

 _______ is perpendicular to _______.
Solve each problem.

1. Which angle is greater than 90°?

2. Sketch a right angle.

3. Use a protractor to measure. What is the measure of angle QXR?

4. Riley drew half of a circle. She wants to divide her picture into four equal angles. What will be the measure of each angle?
Solve each problem.

1. What is the name of a polygon that has three sides and three equal angles?

2. Draw a polygon whose opposite sides are parallel and have equal length. This polygon has four sides and no right angles.

3. Draw a polygon with three sides and one right angle. Label your drawing.

4. Describe a parallelogram. Name two quadrilaterals that are parallelograms.

Is the dotted line a line of symmetry? Write yes or no for each figure.

1. [Diagram of a shape with a dotted line] __________

2. [Diagram of a flower with a dotted line] __________

How many lines of symmetry does this have? Draw the lines of symmetry.

3. [Diagram of a square] ________ lines of symmetry

4. [Diagram of a hexagon] ________ lines of symmetry
<table>
<thead>
<tr>
<th>Skill</th>
<th>Assessment page</th>
<th>Pre-Assessment</th>
<th>Post-Assessment</th>
<th>EIA Mathematics Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write an Equation</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>Unit 1</td>
</tr>
<tr>
<td>Solve Multi-Step Problems</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>Unit 2</td>
</tr>
<tr>
<td>Factors and Multiples</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>Unit 3</td>
</tr>
<tr>
<td>Generate Patterns</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>Unit 4</td>
</tr>
<tr>
<td>Use Place Value</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>Unit 5</td>
</tr>
<tr>
<td>Add Multi-Digit Numbers</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>Unit 6</td>
</tr>
<tr>
<td>Subtract Multi-Digit Numbers</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>Unit 7</td>
</tr>
<tr>
<td>Multiplication Properties</td>
<td>11</td>
<td>4</td>
<td>4</td>
<td>Unit 8</td>
</tr>
<tr>
<td>Multiply by a One-Digit Number</td>
<td>12</td>
<td>4</td>
<td>4</td>
<td>Unit 9</td>
</tr>
<tr>
<td>Multiply by a Two-Digit Number</td>
<td>13</td>
<td>4</td>
<td>4</td>
<td>Unit 10</td>
</tr>
<tr>
<td>Divide Two-Digit Numbers</td>
<td>14</td>
<td>5</td>
<td>4</td>
<td>Unit 11</td>
</tr>
<tr>
<td>Divide Multi-Digit Numbers</td>
<td>15</td>
<td>4</td>
<td>4</td>
<td>Unit 12</td>
</tr>
<tr>
<td>Find Equivalent Fractions</td>
<td>16</td>
<td>4</td>
<td>4</td>
<td>Unit 13</td>
</tr>
<tr>
<td>Compare Fractions</td>
<td>17</td>
<td>4</td>
<td>4</td>
<td>Unit 14</td>
</tr>
<tr>
<td>Add and Subtract Fractions</td>
<td>18</td>
<td>4</td>
<td>4</td>
<td>Unit 15</td>
</tr>
<tr>
<td>Add/Subtract Mixed Numbers</td>
<td>19</td>
<td>4</td>
<td>4</td>
<td>Unit 16</td>
</tr>
<tr>
<td>Multiply a Fraction by a Whole Number</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>Unit 17</td>
</tr>
<tr>
<td>Tenths and Hundredths</td>
<td>21</td>
<td>4</td>
<td>4</td>
<td>Unit 18</td>
</tr>
<tr>
<td>Compare Decimals</td>
<td>22</td>
<td>4</td>
<td>4</td>
<td>Unit 19</td>
</tr>
<tr>
<td>Use Metric Measurements</td>
<td>23</td>
<td>4</td>
<td>4</td>
<td>Unit 20</td>
</tr>
<tr>
<td>Use Customary Measurements</td>
<td>24</td>
<td>4</td>
<td>4</td>
<td>Unit 21</td>
</tr>
<tr>
<td>Perimeter and Area</td>
<td>25</td>
<td>4</td>
<td>4</td>
<td>Unit 22</td>
</tr>
<tr>
<td>Lines and Angles</td>
<td>26</td>
<td>4</td>
<td>4</td>
<td>Unit 23</td>
</tr>
<tr>
<td>Measure Angles</td>
<td>27</td>
<td>4</td>
<td>4</td>
<td>Unit 24</td>
</tr>
<tr>
<td>Classify Polygons</td>
<td>28</td>
<td>4</td>
<td>4</td>
<td>Unit 25</td>
</tr>
<tr>
<td>Symmetry</td>
<td>29</td>
<td>4</td>
<td>4</td>
<td>Unit 26</td>
</tr>
<tr>
<td>TOTAL</td>
<td>/105</td>
<td>/104</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Write an equation for each problem. Then solve the problem.

1. Some number is 4 times as much as 7.

 \[n = \frac{4}{x} \times 7 \]

2. The balloon man has 6 groups of balloons. He has 3 balloons in each group. How many balloons does he have in all?

 \[6 \times 3 = 18 \]

3. There are 4 times as many cats as dogs. There are 12 dogs. How many cats are there?

 \[4 \times 12 = 48 \]

4. Elana used 36 counters. She put 9 counters in each row. How many rows did she make?

 \[36 \div 9 = 4 \]
Write an equation for each problem. Then solve the problem.

1. A librarian bought 26 new books. He unpacked 11 books. The rest of the new books are divided equally among 3 cartons. How many new books \((n) \) are in each carton?

\[
\frac{26 - 11}{3} = \frac{5}{3}
\]

There are \(\frac{5}{3} \) books in each carton.

2. Tara has 7 coins. Brian has 3 times as many coins as Tara. Brian gets some more coins. Now Brian has 24 coins. How many more coins did Jon get?

\[
7 \times 3 + n = 24
\]

Jon got \(\frac{3}{3} \) more coins.

3. Mrs. Lupo baked 18 oat muffins and 14 blueberry muffins. She brought half of the muffins to school. How many muffins did Mrs. Carson bring to school?

\[
\frac{18 + 14}{2} = 16
\]

Mrs. Lupo brought \(16 \) muffins to school.
List the factors for each number. Show your work.

1. 11
 The factors of 11 are \((1, 11)\).

2. 36
 The factors of 36 are \(1, 3, 4, 6, 9, 12, 36\).

List the first 8 multiples for each number. Write two common multiples.

3. Multiples of 4: \(4, 8, 12, 16, 20, 24, 28, 32\)
 Multiples of 6: \(6, 12, 18, 24, 30, 36, 42, 48\)
 Two common multiples of 4 and 6: \(12\) and \(24\)

4. Multiples of 6: \(6, 12, 18, 24, 30, 36, 42, 48\)
 Multiples of 8: \(8, 16, 24, 32, 40, 48, 56, 64\)
 Two common multiples of 6 and 8: \(24\) and \(48\)
Extend each pattern. Then write a rule.

1.

 rule: subtract 3

2. 28, 21, 14, ______, ______

 rule: subtract 7

3. | Input | Output |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
</tbody>
</table>

 rule: multiply by 5

4. Use the rule to make a pattern.

 rule: Add 6.

ANSWERS MAY VARY
Write each number in expanded form.

1

<table>
<thead>
<tr>
<th>hundred thousands</th>
<th>ten thousands</th>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

8,000 700 0 3

8,703

400,000 + 1,000 + 50 + 7

2

<table>
<thead>
<tr>
<th>hundred thousands</th>
<th>ten thousands</th>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>1,</td>
<td>0</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

400,000 + 1,000 + 50 + 7

3

Compare. Use >, <, or =.

3 4,649 < 4,724

4 81,099 > 80,976
Solve each problem. Show your work.

1. \(1,115 + 834\)

<table>
<thead>
<tr>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>+</td>
<td>8</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(1,949)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. \(359 + 652\)

\[
\begin{array}{c}
359 \\
+ 652 \\
\hline
1,011
\end{array}
\]

3. \(6,408 + 5,098\)

\[
\begin{array}{c}
6,408 \\
+ 5,098 \\
\hline
11,506
\end{array}
\]

4. \(30,050 + 45,265\)

\[
\begin{array}{c}
30,050 \\
+ 45,265 \\
\hline
75,315
\end{array}
\]

5. \(30,477 + 5,882 = n\)

\[
n = 36,359
\]
Solve each problem. Show your work.

1. \[1,225 - 834\]

<table>
<thead>
<tr>
<th></th>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

= \[391\]

2. \[652 - 349\]

\[
\begin{array}{c}
652 \\
- 349 \\
\hline
303
\end{array}
\]

3. \[6,408 - 5,098\]

\[
\begin{array}{c}
6,408 \\
- 5,098 \\
\hline
1,310
\end{array}
\]

4. \[20,075 - 15,260\]

\[
\begin{array}{c}
20,075 \\
- 15,260 \\
\hline
4,815
\end{array}
\]

5. \[8,475 - 872 = n\]

\[
n = \frac{7,603}{}\]
Use a multiplication property to complete each problem.

1. \(3 \times 6 = 6 \times \underline{3}\)

2. \(3 \times 16 = 3 \times (\underline{8} + \underline{8})\)

 \(3 \times 16 = (3 \times \underline{8}) + (3 \times \underline{8})\)

 \(3 \times 16 = \underline{24} + \underline{24}\)

 \(3 \times 16 = \underline{48}\)

3. \(426 \times 1 = \underline{426}\)

4. \((5 \times 0) \times 11 = \underline{0} \times \underline{11}\)

 \(5 \times 0 \times 11 = \underline{0}\)

5. \(4 \times 13 = \underline{52}\)
Solve each problem. Show your work.

1. \[4 \times 14 = 56 \]

2. \[3 \times 235 = 705 \]

3. \[6 \times 79 = 474 \]

4. A toy store manager orders 247 toy trains. She orders 4 times more toy cars. How many toy cars did she order?

\[988 \]

\[\text{_______ toy cars} \]
Solve each problem. Show your work.

1. 20×49

 49
 $\times 20$

 980

2. 12×34

 34
 $\times 12$

 408

3. 35×76

 76
 $\times 35$

 $2,660$

4. Each shelf in the children’s library holds 25 books. There are 42 full shelves of children’s books. How many children’s books does the library have?

 $$1,050$$

 books
1. \[57 \div 3 = 19 \]

\[3 \overline{)57} \]

2. \[72 \div 4 = 18 \]

\[4 \overline{)72} \]

3. \[87 \div 5 = 17.4 \]

\[5 \overline{)87} \]

4. Ben has 74 trading cards. He puts 6 cards into each package. How many full packages of cards can he make?

12 packages
Solve each problem. Show your work.

1. \[36 \div 9 = \square\]
 \[360 \div 9 = \square\]
 \[3,600 \div 9 = \square\]

2. \[621 \div 3 = \square\]

3. \[248 \div 6 = \square\] (remainder: 2)

4. Lena has 371 beads. She uses 9 beads for each bracelet. How many bracelets can she make?
 \[\square\] bracelets
Find equivalent fractions. Use the pictures to help.

1 \[\frac{1}{2} = \frac{4}{8} \]

2 \[\frac{1}{5} = \frac{2}{10} \]

3 \[\frac{3}{6} = \frac{4}{8} \]

4 \[\frac{3}{4} = \frac{3}{4} \times \frac{2}{2} = \frac{6}{8} \]
Compare fractions. Use symbols >, <, or =.

1. \[
\frac{1}{5} < \frac{1}{2}
\]

2. \[
\begin{array}{cccc}
\frac{1}{2} & \frac{6}{8} & \frac{2}{8} & \frac{5}{8} \\
2/8 & < & 1/2 & < & 5/8 & < & 6/8
\end{array}
\]

3. \[
\frac{3}{5} = \frac{6}{10}
\]

4. \[
\begin{array}{cccc}
\frac{2}{4} & \frac{2}{8} & \frac{4}{10} \\
2/8 & < & 4/10 & < & 2/4
\end{array}
\]
Solve each problem. Show your work.

1. \(\frac{2}{10} + \frac{5}{10} = \frac{7}{10} \)

2. \(\frac{2}{5} + \frac{4}{5} = \frac{6}{5} = 1\frac{1}{5} \)

3. \(\frac{7}{8} - \frac{2}{8} = \frac{5}{8} \)

4. A hiking trail is \(\frac{9}{10} \) mile long. Meg hiked \(\frac{4}{10} \) mile on the trail. How much of the trail is left to hike?

\(\frac{5}{10} \) or \(\frac{1}{2} \) mile
Solve each problem. Show your work.

1. \[2\frac{3}{6} + \frac{2}{6} = \boxed{2\frac{5}{6}} \]

2. \[2\frac{2}{3} - \frac{3}{3} = \boxed{1\frac{2}{3}} \]

3. \[1\frac{4}{5} + 1\frac{1}{5} = \boxed{2\frac{5}{5} \text{ or } 3} \]

4. \[3\frac{2}{4} - 2\frac{3}{4} = \boxed{3/4} \]
Solve each problem. Show your work.

1. \(8 \times \frac{1}{3} = \frac{8}{3}\)
 \[\frac{3}{3} = 2\frac{2}{3}\]

2. \(\frac{1}{6} \times 6 = \frac{6}{6}\)
 \[\frac{6}{6} = 1\]

3. \(3 \times \frac{5}{8} = \frac{15}{8}\)
 \[\frac{3}{8} = 1\frac{7}{8}\]

4. Gabe buys 16 muffins at the bake sale. Three-fourths of the muffins are cranberry. How many cranberry muffins did he buy?
 \[12\] cranberry muffins
Complete each problem.

1. fraction: \(\frac{6}{10} \)
 decimal: \(0.6 \)
 word name: six-tenths

2. fraction: \(\frac{48}{100} \)
 decimal: \(0.48 \)
 word name: forty-eight hundredths

3. \(\frac{8}{10} = \frac{80}{100} \)
 \(0.8 = 0.80 \)

4. \(0.4 + 0.23 = 0.63 \)
Compare. Use >, <, or =.

1. 0.9 > 0.6

2. 0.4 > 0.30

3. 0.43 < 0.48

4. 0.6 > 0.06
Solve each problem. Show your work.

1. 5 meters = \(\frac{500}{100}\) centimeters
 \[
 5 \times 100 = 500
 \]

2. 6 kilograms = \(\frac{6,000}{1,000}\) grams
 \[
 6 \times 1,000 = 6,000
 \]

3. 8 liters = \(\frac{8,000}{1}\) milliliters

4. It is a 5-kilometer hike from the road to the cabin. How many meters away is the cabin from the road?
 \[
 5,000 \text{ meters}
 \]
Solve each problem. Show your work.

1. 9 yards = 27 feet
 \[9 \times 3 = 27\]

2. 5 pounds = 80 ounces
 \[5 \times 16 = 80\]

3. 7 gallons = 28 quarts
 \[7 \times 4 = 28\]

4. Tara needs 4 1/2 feet of ribbon to wrap a present. How many inches of ribbon does she need?
 \[54\text{ inches}\]
Solve each problem. Show your work.

1. \[P = 2 \times (l + w) \]
 \[P = 2 \times (\frac{11}{8}) \]
 \[P = \frac{2 \times 19}{38} \]
 The perimeter is _______ centimeters.

2. \[A = l \times w \]
 \[A = \frac{8}{4} \]
 \[A = \frac{32}{32} \]
 The area is _______ square feet.

3. The perimeter is _______ meters.
 The area is _______ square meters.

4. Kaya’s calculator is 14 centimeters long and 8 centimeters wide.
 What is the perimeter of her calculator?
 What is the area?
 The perimeter is _______ centimeters.
 The area is _______ square centimeters.
Use a straight edge. Draw each figure and label it.

1. line AB

2. angle FGH

3. line segment XY

Use the drawing to name each figure. Use symbols for angles and lines.

4. parallel lines
 \[VW \] is parallel to \[PO \].

5. perpendicular lines
 \[AB \] is perpendicular to \[VW \] or \[PO \].
Solve each problem.

1. Which angle is greater than 90°?

2. Sketch a right angle.

3. Use a protractor to measure. What is the measure of angle QXR?

4. Riley drew half of a circle. She wants to divide her picture into four equal angles. What will be the measure of each angle?
Solve each problem.

1. What is the name of a polygon that has three sides and three equal angles?

 equilateral triangle

2. Draw a polygon whose opposite sides are parallel and have equal length. This polygon has four sides and no right angles.

 ANSWERS MAY VARY

3. Draw a polygon with three sides and one right angle. Label your drawing.

 ANSWERS MAY VARY

4. Describe a parallelogram. Name two quadrilaterals that are parallelograms.

 ANSWERS MAY VARY
Is the dotted line a line of symmetry? Write yes or no for each figure.

1. yes

2. no

How many lines of symmetry does this have? Draw the lines of symmetry.

3. 4 lines of symmetry

4. 2 lines of symmetry